Genomic surveillance of Pseudomonas aeruginosa in the Philippines, 2013-2014

P. aeruginosa surveillance in the Philippines

Authors

  • Jeremiah Chilam Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Silvia Argimon Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
  • Marilyn T. Limas Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Melissa L. Masim Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • June M. Gayeta Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Marietta L. Lagrada Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Agnettah M. Olorosa Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Victoria Cohen Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
  • Lara T. Hernandez Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Benjamin Jeffrey Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
  • Khalil Abudahab Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland
  • Charmian M. Hufano Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Sonia B. Sia Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
  • Matthew T.G. Holden University of St Andrews School of Medicine, St Andrews, Scotland, United Kingdom of Great Britain and Northern Ireland
  • John Stelling Brigham and Women’s Hospital, Boston (MA), USA
  • David M. Aanensen Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, England, United Kingdom of Great Britain and Northern Ireland; Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, England, United Kingdom of Great Britain and Northern Ireland
  • Celia C. Carlos Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines

DOI:

https://doi.org/10.5365/wpsar.2020.11.1.006

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen often causing nosocomial infections that are resilient to treatment due to an extensive repertoire of intrinsic and acquired resistance mechanisms. In recent years, increasing resistance rates to antibiotics such as carbapenems and extended-spectrum cephalosporins have been reported, as well as multi-drug resistant and possible extremely drug-resistant rates of approximately 21% and 15%, respectively. However, the molecular epidemiology and AMR mechanisms of this pathogen remains largely uncharacterized.

We sequenced the whole genomes of 176 P. aeruginosaisolates collected in 2013-2014 by the Antimicrobial Resistance Surveillance Program. The multi-locus sequence type, presence of antimicrobial resistance (AMR) determinants, and relatedness between the isolates were derived from the sequence data. The concordance between phenotypic and genotypic resistance was also determined.

Carbapenem resistance was associated namely with loss-of function of the OprD porin, and acquisition of the metallo-?-lactamase VIM. The concordance between phenotypic and genotypic resistance was 93.27% overall for 6 antibiotics in 3 classes, but varied widely between aminoglycosides. The population of P. aeruginosain the Philippines was diverse, with clonal expansions of XDR genomes belonging to multi-locus sequence types ST235, ST244, ST309, and ST773. We found evidence of persistence or reintroduction of the predominant clone ST235 in one hospital, as well as  transfer between hospitals. Most of the ST235 genomes formed a distinct Philippine lineage when contextualized with international genomes, thus raising the possibility that this is a lineage unique to the Philippines.  This was further supported by long-read sequencing of one representative XDR isolate, which revealed the presence of an integron carrying multiple resistance genes, including blaVIM-2, with differences in gene composition and synteny to other P. aeruginosaclass 1 integrons described before. 

We produced the first comprehensive genomic survey of P. aeruginosain the Philippines, which bridges the gap in genomic data from the Western Pacific region and will constitute the genetic background to contextualize ongoing prospective surveillance. Our results also highlight the importance of infection control interventions aimed to curtail the spread of international epidemic clone ST235 within the country.

References

Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005;11 Suppl 4:17-32.

Chawla R. Epidemiology, etiology, and diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia in Asian countries. Am J Infect Control. 2008;36(4 Suppl):S93-100.

Navoa-Ng JA, Berba R, Arreza Galapia Y, Rosenthal VD, Villanueva VD, Tolentino MCV, et al. Device-associated infections rates in adult, pediatric, and neonatal intensive care units of hospitals in the Philippines: International Nosocomial Infection Control Consortium (INICC) findings. 2011;39(7):548-54.

Lopez-Causape C, Cabot G, Del Barrio-Tofino E, Oliver A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front Microbiol. 2018;9:685.

Mitchell KF, Safdar N, Abad CL. Evaluating carbapenem restriction practices at a private hospital in Manila, Philippines as a strategy for antimicrobial stewardship. Arch Public Health. 2019;77:31.

Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health. ARSP 2013 Annual Report Data Summary. 2014. Contract No.: 05/08/2019.

Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health. ARSP 2014 Annual Report Data Summary. 2015. Contract No.: 05/08/2019.

Antimicrobial Resistance Surveillance Reference Laboratory, Research Institute for Tropical Medicine, Department of Health. ARSP 2018 Annual Report Data Summary. 2019.

Viedma E, Juan C, Acosta J, Zamorano L, Otero JR, Sanz F, et al. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother. 2009;53(11):4930-3.

Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, et al. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. Int J Antimicrob Agents. 2017;49(6):767-9.

Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM, et al. Emergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa. Genome Biol Evol. 2017;9(12):3238-45.

Castanheira M, Bell JM, Turnidge JD, Mendes RE, Jones RN. Dissemination and genetic context analysis of bla(VIM-6) among Pseudomonas aeruginosa isolates in Asian-Pacific Nations. Clin Microbiol Infect. 2010;16(2):186-9.

Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, et al. Dissemination of metallo-beta-lactamase-producing Pseudomonas aeruginosa of sequence type 235 in Asian countries. J Antimicrob Chemother. 2013;68(12):2820-4.

Treepong P, Kos VN, Guyeux C, Blanc DS, Bertrand X, Valot B, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect. 2018;24(3):258-66.

Juayang AC, Lim JPT, Bonifacio AFV, Lambot AVL, Millan SM, Sevilla V, et al. Five-Year Antimicrobial Susceptibility of Pseudomonas aeruginosa from a Local Tertiary Hospital in Bacolod City, Philippines. Trop Med Infect Dis. 2017;2(3).

Litzow JM, Gill CJ, Mantaring JB, Fox MP, MacLeod WB, Mendoza M, et al. High frequency of multidrug-resistant gram-negative rods in 2 neonatal intensive care units in the Philippines. Infect Control Hosp Epidemiol. 2009;30(6):543-9.

Quick J, Cumley N, Wearn CM, Niebel M, Constantinidou C, Thomas CM, et al. Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing. BMJ Open. 2014;4(11):e006278.

Argimon S, Masim MA, Gayeta JM, Lagrada ML, Macaranas PK, Cohen V, et al. See and Sequence: Integrating Whole-Genome Sequencing Within the National Antimicrobial Resistance Surveillance Program in the Philippines. BioRxiv. 2019.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81.

Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom. 2016;2(8):e000083.

Hunt M, Mather AE, Sanchez-Buso L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3(10):e000131.

Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595.

Cury J, Jove T, Touchon M, Neron B, Rocha EP. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 2016;44(10):4539-50.

Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3):e15.

Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2(4):e000056.

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-3.

Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.

David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29.

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348-57.

Oliver A, Mulet X, Lopez-Causape C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22:41-59.

Dimatatac EL, Alejandria MM, Montalban C, Pineda C, Ang C, Delino R. Clinical Outcomes and Costs of Care of Antibiotic Resistant Pseudomonas aeruginosa Infections. Phil J Microbiol Infect Dis. 2003;31(4):159-67.

Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.

Juan C, Torrens G, Gonzalez-Nicolau M, Oliver A. Diversity and regulation of intrinsic beta-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev. 2017;41(6):781-815.

Snyder LA, Loman NJ, Faraj LA, Levi K, Weinstock G, Boswell TC, et al. Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. Euro Surveill. 2013;18(42).

Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010;74(4):621-41.

Edelstein MV, Skleenova EN, Shevchenko OV, D'Souza J W, Tapalski DV, Azizov IS, et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis. 2013;13(10):867-76.

Pelegrin AC, Saharman YR, Griffon A, Palmieri M, Mirande C, Karuniawati A, et al. High-Risk International Clones of Carbapenem-Nonsusceptible Pseudomonas aeruginosa Endemic to Indonesian Intensive Care Units: Impact of a Multifaceted Infection Control Intervention Analyzed at the Genomic Level. mBio. 2019;10(6).

Downloads

Published

28-04-2021

How to Cite

1.
Chilam J, Argimon S, Limas MT, Masim ML, Gayeta JM, Lagrada ML, Olorosa AM, Cohen V, Hernandez LT, Jeffrey B, Abudahab K, Hufano CM, Sia SB, Holden MT, Stelling J, Aanensen DM, Carlos CC. Genomic surveillance of Pseudomonas aeruginosa in the Philippines, 2013-2014: P. aeruginosa surveillance in the Philippines. Western Pac Surveill Response J [Internet]. 2021 Apr. 28 [cited 2025 Jan. 21];12(2):16. Available from: https://ojs.wpro.who.int/ojs/index.php/wpsar/article/view/719

Issue

Section

Original Research

Most read articles by the same author(s)