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All-cause mortality calculator for COVID-19 response

This appendix provides technical details on the statistical methods used to estimate excess mortality during the 
coronavirus disease (COVID-19) pandemic using data on all-cause mortality (ACM). It also provides a simulation study 
to assess the validity of the methodology. The exact code used in the analyses in this paper is in a static archive.1

We consider the case where we have multiple time-series of ACM counts from each Member State for each week 
between 1 January 2015 and a recent date. For some Member States we have only monthly data; for such cases, the 
description below is also suitable. We consider the case where we have separate reported counts for each sex and 
age group (typically, 5-year age groups).

The primary objective is to estimate the expected ACM counts for each week from 1 January 2020 onward 
assuming no pandemic had occurred. The excess mortality is defined as the difference between the reported counts 
and expected counts for each week.

Model

To illustrate, let us consider the case of females aged 65–74 years in Australia. Let yt be the count for week t=1,…,T 
with t=1,…,260 being the period 1 January 2015 to 31 December 2020. We model yt as a random variable following 
a negative-binomial distribution with mean parameter λt. We make this choice rather than using a Poisson distribution 
to account for overdispersion in the counts. The overdispersion parameter is itself estimated from the data and the 
mean parameters λt are modelled as:

log  λ t  =c (t)  + trend(t)  + Xtβ

where c(t) represents the annual cycle in ACM and trend(t) is the curvilinear trend of ACM over time. The annual cycle 
c(t) is modelled as a cyclic cubic spline function2 of time with a period of 52 weeks (i.e. c(t)= c(t + 52)), where a 
spline is a piecewise polynomial. Conceptually, one can imagine a high-degree polynomial capable of crossing through 
every data point. Such a polynomial would probably overfit the observed data, meaning it may not predict well using 
new data. Splines allow many low-degree (in this case, degree three) polynomials to fit the data in pieces, achieving 
a good fit to the data without the risk of overfitting.

Specifically, ct is modelled as a piecewise cubic polynomial that has a continuous second derivative, is continu-
ous, has continuous first and second derivatives at 52-week cycles and best fits the recorded ACM while being 
smooth. The specific criterion for the last feature is to choose ct to minimize the penalized square error (PSE):

where c’’[s] is the second derivative of c[s] and τ is a smoothing parameter, chosen to balance the closeness of fit 
to the recorded counts (the first term) with the smoothness of c[s] (the second term). Hence, choosing the function 
c[s] that minimizes PSEτ(c) provides a balanced representation of the annual cycle. It prioritizes smoothness of c[s] 
over the closeness of fit of c[s] to the recorded ACM. The traditional estimator, c[s], is the minimizer with τ=0; that 
is, there is no penalty for lack of smoothness. The choice of τ is subjective. In this work we chose to maximize the 
ability to predict unrecorded ACM counts. Specifically, we used generalized cross validation (GCV)3 to choose, and 
the R package ‘mgcv’ (created by Simon Wood) for analysis.4,5 The annual cycle obtained in this way is the optimal 
smoothest annual cycle chosen to maximize the likelihood of the observed ACM.

A similar approach is taken to the curvilinear trend trend(t). It is modelled as a (non-cyclic) cubic spline function 
– specifically, as a piecewise cubic polynomial that has a continuous second derivative, is continuous and best fits the 
recorded ACM while being smooth. The specific criterion for the last feature is to choose trend(t) to minimize the PSE:
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where trend’’[t] is the second derivative of trend(t)  and 
γ is a smoothing parameter, chosen to balance the close-
ness of fit to the recorded counts (the first term) with 
the smoothness of trend(t) (the second term). Hence, 
choosing the function trend(t) that minimizes PSEγ 
(trend) provides a balanced representation of the trend. 
It prioritizes smoothness of trend(t)  over the closeness 
of fit of trend(t)  to the recorded ACM. The traditional 
estimator, trend(t), is the minimizer with γ=0; that is, 
there is no penalty for lack of smoothness. Like τ, the 
choice of γ is subjective. Also, as with the annual cycle, 
we chose to maximize the ability to predict unrecorded 
ACM counts by using the GCV criterion. The model al-
lows for arbitrary time-varying covariates, Xt. Including 
both the date and period allows for the model to detect 
trends both across and within years.

Negative-binomial regression is a natural choice 
given that we are seeking to estimate the death count 
during any time frame. Negative-binomial is preferred to 
Poisson regression because it allows for overdispersion; 
also, it can account for instances of low or zero counts 
without issue.

This particular negative-binomial regression 
model is a generalized additive model (GAM) that uses 
smoothing functions for the predictor variables. Since 
the date and period are input as discrete values, they 
are smoothed using cubic splines, a common smoothing 
technique. The parameters β and the splines themselves 
are found through restricted maximum likelihood esti-
mation. GAMs are a type of generalized linear model, 
which are generalizations of ordinary linear regression 
that allow for the response variable to have error distri-
butions other than the normal distribution (in this case, 
the negative-binomial distribution).

Currently, this model is simple in that it uses only 
information on sex, age group and time/date. When more 
data become readily available (e.g. influenza counts), 
the model can easily be extended to incorporate that 
data. There are also other ways to enhance the model, 
such as considering negative-binomial regression for 
the case of overdispersion or using hierarchical models 
for sharing information across groupings. Hence, this 
preliminary approach should serve as a strong starting 
point.

The next step is to stochastically forecast the 
expected to represent the uncertainty in the estimate 
of the expected. Thus, the statistical significance of the 
observed can be determined (i.e. if it represents a sub-
stantial increase or decrease from the baseline). One 
detail of the forecast is that it is an average over the 
sampling distribution of the parameter estimates. This 
is a simple way to account for uncertainty in our model 
for the expected mortality in addition to the sampling 
variation of the counts for given model parameters. We 
prefer this to a formal Bayesian model owing to its 
simplicity.

Currently, models are fit separately to each sex,  
each age group and each Member State. It is possible 
to improve the estimation by using information from 
both sexes and multiple age groups simultaneously, but 
this is a bias–variance trade-off that can be explored.

For Member States with missing (pandemic) 
weeks, we can stochastically interpolate using simple 
time-series models. If the number of missing weeks is 
significantly high, we use a negative-binomial model 
such as the one described above to stochastically 
interpolate.

An issue that may be important to adjust for 
is reporting delay (this is mainly an issue for recent 
weeks). To do this, information is needed on the 
reporting delay. In the United States, the National 
Center for Health Statistics reports mortality as the 
serial provisional data from the states are received and 
processed – counts of deaths from recent weeks are 
highly incomplete, reflecting delays in reporting. These 
“provisional” counts are updated regularly over the 
following weeks, and the counts are not finalized until 
more than a year later. The estimate of completeness 
is based on the number of weeks that have passed 
between when the death occurred and when the data 
set was obtained. We can model this relationship and 
use it to adjust the estimates, if necessary.

Validation of the statistical method for estimating 
ACM without a pandemic

One may ask why it is not better to simply compare the 
observed ACM counts to historical averages of recent 
years. As we will show, doing so offers less robust pre-
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diction intervals than using the model described above. 
The following validation metrics also justify using this 
model to gauge the significance of current ACM counts 
relative to pre-pandemic times.

The model attempts to forecast ACM counts for 
each week of 2020 and beyond, assuming no pandemic 
had occurred. Since the discrepancy between actual 
counts and expected counts is the sought-after esti-
mate of excess mortality in 2020, it is vital that the 
model makes accurate predictions. One way to validate 
the accuracy of the model is to use it to predict ACM 
during 2019, a year in which there would have been 
no “excess” mortality. The model is trained using data 
from 1 January 2015 through to 31 December 2018, 
then predictions are made on a weekly or monthly basis 

for 2019. The closer the predicted counts are to the 
observed counts, the better the model is performing.

The model has been validated across all age 
groups, sexes and Member States, but to continue 
with the example used earlier (i.e. of females aged 
65–74 years in Australia), we present those results for 
that example. Appendix Fig. 1 below shows the 95% 
prediction intervals for the model (“spline”) and for the 
weekly average. The actual weekly counts are denoted 
by the black dots, showing that the spline model fails to 
capture the true count just three times out of 52 periods 
(95% accurate). The weekly average fairs far worse. 
As is evident from Appendix Fig. 1, the lengths of the 
spline intervals are typically smaller than the lengths of 
the weekly average intervals, meaning that the spline 

Appendix Fig. 1. Prediction intervals for 2019 based on deaths in 2015–2018. The black dots are the reported 
deaths for each week in 2019. The green error bars are based on the weekly averages. The blue 
intervals are based on the spline model. Those based on the weekly averages are incorrect and their 
actual coverage is well below their nominal coverage. The intervals based on the spline model are valid.
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Sex and age group Average (PI %) Spline (PI %)

Female 0–44 85 94

Female 45–64 83 93

Female 65–74 81 91

Female 75–84 92 93

Female ≥85 87 96

Female total 88 95

Male 0–44 83 89

Male 45–64 81 97

Male 65–74 92 92

Male 75–84 87 91

Male ≥85 81 87

Male total 75 86

Total 0–44 87 89

Total 45–64 85 95

Total 65–74 88 90

Total 75–84 81 92

Total ≥85 81 95

Overall total 83 91

Median % 84 92

Mean % 84 92

Appendix Table 1. Prediction interval accuracy for all age and sex groups. The intervals produced by the spline 
model have the correct coverage whereas those produced by the weekly average model are well below 
their nominal coverage.

ETS: exponential triple smoothing; PI: prediction interval.

intervals should be long enough to capture the true 
values most of the time; however, intervals that are 
too long create too much uncertainty to be worthwhile. 
Appendix Table 2 shows the lengths of the prediction 
intervals for the spline, exponential triple smoothing 
(ETS) and weekly average. The spline intervals tend 
to be nearly the same length as those of the ETS for 
those aged 0–74 (the weekly average has a short 
length but is highly inaccurate). It is in those aged 
75+ (and when aggregating across all age groups) that 
the spline intervals are longer than their counterparts. 
The significant increase in the uncertainty surround-
ing the older age categories is something that will be 
investigated.

model has higher accuracy because it is a better model 
rather than just because it is larger. More importantly, 
the weekly average intervals are misleading and their 
actual coverage is far below their nominal coverage.

The accuracy of the spline model is not solely for 
females aged 65–74. Appendix Table 1 shows per cent 
accuracy (i.e. how often the prediction interval contains 
the actual value) for each demographic breakdown. The 
spline model significantly outperforms the weekly aver-
age across all sex and age groups.

Another way to check the validity of the model is 
to look at the length of the prediction intervals. The 
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Appendix Table 2. Prediction interval length for all Australian age and sex groups.

AUS: Australia; ETS: exponential triple smoothing; PI: prediction interval.

Member state: Sex and age 
group

Average from 2015 to 2018  
(PI length)

ETS (PI length) Spline (PI length)

AUS: Female 0–44 8.9 20 20

AUS: Female 45–64 18.6 43 43

AUS: Female 65–74 24.9 52 53

AUS: Female 75–84 37.8 70 78

AUS: Female ≥85 70.3 103 148

AUS: Female total 106.5 143 225

AUS: Male 0–44 10.0 21 21

AUS: Male 45–64 23.6 50 53

AUS: Male 65–74 36.0 63 72

AUS: Male 75–84 45.1 78 93

AUS: Male ≥85 60.2 87 118

AUS: Male total 107.2 143 210

AUS: Total 0–44 13.8 29 29

AUS: Total 45–64 28.3 66 66

AUS: Total 65–74 50.8 81 98

AUS: Total 75–84 64.7 105 130

AUS: Total ≥85 111.9 135 228

AUS: Overall total 191.0 202 386

Median length 41.5 74 85

Mean length 56.1 83 115


