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INTRODUCTION

In 2022 alone, approximately 10.6 million people fell 
ill with TB globally.1 Although new diagnostic tests are 
improving the capacity for early detection, TB remains 

one of the world’s deadliest infectious diseases.2–4 While 
chest radiographs (CXRs) are used to screen for TB, their 
interpretation capacity is limited in many high-TB burden 

settings. Recognizing this barrier to early detection, in 
March 2021, the World Health Organization (WHO) 
endorsed the use of artificial intelligence-powered 
computer-aided detection (CAD) in place of human 
readers to interpret digital CXRs for TB among individuals 
aged 15 years and older.5 WHO describes four models for 
integrating CAD into TB screening or triage algorithms.6 
These models differ in the way CAD is used alongside 
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human readers to interpret CXRs. They comprise: CAD 
screening followed by human reading for all abnormal 
CXRs; CAD screening followed by human reading for all 
abnormal CXRs plus a proportion of normal CXRs; CAD 
and human reading conducted in parallel; and human 
reading replaced by CAD.

In recent years, the spectrum of pulmonary TB has 
broadened and now includes terms describing early stages 
of disease such as “minimal” and “subclinical” TB.7–9 
Subclinical TB is “disease due to viable Mycobacterium 
tuberculosis bacteria that does not cause clinical TB-
related symptoms but causes other abnormalities that 
can be detected using existing radiologic or microbiologic 
assays.”7 Furthermore, it was previously thought that 
TB transmission only occurred when symptoms such 
as cough were present, but recent studies demonstrate 
that people with subclinical TB disease are infectious10 
and exhale M. tuberculosis bacteria (evidenced by face-
mask sampling).11 Prevalence surveys from 23 African 
and Asian countries show that 36–80% of individuals 
with TB disease have no TB symptoms.12 Neglecting to 
diagnose and cure subclinical TB disease is thus a barrier 
to ending TB.

Screening of any TB symptom (cough, haemoptysis, 
fever, night sweats or weight loss) has an estimated 71% 
sensitivity for identifying TB disease.6 CXR screening 
using TB-presumptive abnormalities significantly 
improves case detection, in particular of subclinical TB, 
increasing sensitivity to 85%.6 While not as accurate as 
chest computed tomography (CT) imaging for detecting 
subclinical and incipient TB,13–15 CXRs remain the most 
pragmatic, readily available radiographic option for TB 
screening and triage in high-TB burden settings, especially 
when coupled with CAD technologies. However, to date, 
few studies have assessed the extent to which CAD 
products improve the accuracy of CXR screening for 
subclinical TB in routine programme implementation.

Viet Nam’s second national TB prevalence survey, 
conducted in 2017–2018, found a bacteriologically-
confirmed TB prevalence of 322 cases per 100 000 
persons; among individuals with confirmed TB disease, 
97.7% had CXR abnormalities suggesting TB, 57.9% 
reported cough for 2 or more weeks and 32.1% had no 
TB symptoms.16 These findings led Viet Nam’s National 
Tuberculosis Program (NTP) to implement a “Double X” 
(2X) strategy to diagnose TB among symptomatic and 

asymptomatic TB-vulnerable populations, which used 
CXR to identify individuals for confirmatory diagnostic 
testing with GeneXpert (Xpert; Cepheid, Sunnyvale, CA, 
United States of America). From 2020 to 2022, CAD 
was integrated into NTP’s 2X community case-finding 
strategy. The aim of this study was to describe the 
demographic, clinical and radiographic characteristics of 
symptomatic and asymptomatic 2X participants, including 
those diagnosed with TB. CAD-scored radiographic 
abnormalities were also assessed to determine whether 
they were associated with Xpert-confirmed TB disease, 
both overall and separately for symptomatic and 
subclinical TB.

METHODS

Setting

This study was conducted as part of routine programmatic 
implementation from March 2020 to December 2022. 
Annual 2X active case finding community campaigns 
were conducted in eight provinces comprising An 
Giang, Can Tho, Dong Nai, Dong Thap, Nghe An, Tay 
Ninh, Tien Giang and Thai Binh, which were selected 
for being representative of Viet Nam’s three regions 
and for their baseline TB notification rates. Collectively, 
the eight provinces accounted for approximately 20% 
of the country’s notified TB cases. The 2X community 
campaigns ranged in duration from 4 to 18 days and 
evaluated between 100 and 440 individuals daily.

Community TB screening algorithms

The 2X community participants comprised two categories 
of TB-vulnerable populations. The first category was 
household contacts of adults diagnosed with pulmonary 
TB disease (with or without bacteriological confirmation) 
within 2 years of the start of the 2X campaign. Contacts 
were persons who had lived, slept (1 night per week) 
or stayed (1 hour per day, 5 days per week) in the 
same house with the index patient for 3 months before 
diagnosis. The second category of TB-vulnerable 
populations included individuals who were aged 60 years 
and older (the age category defined as “elderly” according 
to Vietnamese law17), had a diagnosis of diabetes, or 
were smokers (any smoking history), regular alcohol 
users (daily) or malnourished (low body mass index), as 
well as those with pulmonary or other chronic diseases, 
a history of prior treatment for TB disease or living with 
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HIV. Medical history was self-reported. TB symptoms 
(fever, cough of any duration, weight loss or night sweats) 
were documented but not required for CXR evaluation. 
For participants with “TB-presumptive” CXRs, sputum 
specimens were collected on site for Xpert testing. 
Physicians also referred participants for Xpert testing 
if they had normal CXRs but positive screens for TB 
symptoms and/or TB risk factors, based on participant 
interview during campaign intake.

CXR interpretation by physicians

Posterior-anterior digital CXR images (Vikomed, Hanoi, 
Viet Nam) were obtained in mobile CXR vans and 
interpreted in the van by provincial-level radiologists who 
had access to each participant’s name, age and brief 
medical history including TB symptoms and risk factors. 
CXRs reviewed by physicians were interpreted as “TB-
negative” or “TB-presumptive.”

CAD analysis

Offline CAD analysis with qXR18 version 3.0 (Qure.ai, 
Mumbai, India) was performed using qBoxes installed 
in mobile CXR vans. Each CXR DICOM (Digital Imaging 
and Communications in Medicine) image was given a 
qXR TB abnormality score, which ranged from 0.00 to 
1.00, with higher values indicating more abnormal CXRs. 
The manufacturer’s pre-set threshold for TB interpreted a 
qXR score ≥0.50 as TB-presumptive and <0.50 as TB-
negative. qXR employs convolutional neural networks-
based algorithms that are able to perform “multilabel” 
classification of other, non-TB radiographic abnormalities, 
including blunted costophrenic angle, calcification, 
cardiomegaly, cavity, consolidation, fibrosis, hilar 
lymphadenopathy, nodule, opacity, pleural effusion and 
pneumothorax.19–21 This feature extends the capability of 
qXR beyond providing simple binary TB-presumptive and 
TB-negative results.22,23 Thresholds for the 11 multilabel, 
non-TB radiographic abnormalities analysed in this study 
were pre-set by the manufacturer and did not change 
during the study (2020–2022).

To select CAD TB thresholds for 2X implementation, 
we conducted a retrospective qXR analysis of CXRs 
from 2020 community campaigns, which showed that 
threshold scores from 0.40 to 0.60 resulted in the 
most consistent case-finding yields across provinces. 
Thresholds in this range were employed in 2X campaigns 

in 2021 onwards. In terms of the choice of CAD 
integration model, a priori, there was no preference for a 
“CAD-first” (software interprets CXRs first and only those 
rated as CAD TB-presumptive are read by physicians) or a 
“CAD-parallel” model (CXRs are interpreted by both CAD 
and on-site physicians; Fig. 1), and both models were 
employed in 2021 – CAD-first at three sites and CAD-
parallel at two sites. For the CAD-first model, we selected 
a qXR ≥0.40 TB threshold, which is lower and thus 
more sensitive than the manufacturer’s pre-set threshold 
(≥0.50), to reduce the risk for missing potential cases. 
Conversely, a qXR ≥0.60 TB threshold was selected for 
the “CAD-parallel” model; this is higher than the pre-set 
≥0.50 threshold and was selected to increase CAD 
specificity for the parallel model and reduce the risk of 
false positives. To standardize methods in 2022, all CXRs 
were processed according to the CAD-first model (and 
qXR threshold ≥0.40), which was simpler to implement 
than CAD-parallel integration in mobile CXR vans. qXR 
interpreted CXRs from all 2X participants who were aged 
6 years and older.

Diagnostic confirmation with Xpert testing

Participants referred for Xpert testing produced a single-
spot specimen that was analysed on site or in a nearby 
facility with Xpert capacity (Xpert MTB/RIF or Xpert 
Ultra). Symptomatic TB disease was defined as Xpert-
confirmed TB in individuals with any TB symptom (fever, 
cough of any duration, weight loss or night sweats), and 
subclinical TB disease was defined as Xpert-confirmed 
TB with no TB symptoms.

Statistical analysis

Demographic and clinical characteristics of the 2X study 
participants were summarized and compared across the 
study years using the χ2 test (categorical variables) and 
ANOVA (continuous variables). The characteristics of the 
subsets of participants with symptomatic and subclinical 
Xpert-confirmed TB were also compared using the χ2 
test. Univariate and multivariable logistic regression 
modelling explored which, if any, characteristics (region, 
sex, age group, smoking status, prior treatment for TB, 
diabetes, alcohol use, malnutrition) were associated with 
subclinical Xpert-confirmed TB. We also reported the 
prevalence of the 11 qXR multilabel, non-TB radiographic 
abnormalities for each year of our study (2020–2022). 
Finally, we used univariate and multivariable Firth logistic 
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regression to determine which of the 11 multilabel, 
non-TB radiographic abnormalities were associated with 
Xpert-confirmed TB (overall) and which were associated 
with subclinical Xpert-confirmed TB. The Firth logistic 
regression model uses a penalized log likelihood to handle 
separation, which prevents cases from being dropped 
and enables use of the full sample. All models were fitted 
on data from 2020, 2021, 2022 and all years combined. 
Data were analysed using STATA 18 (Stata Corp; College 
Station, TX, United States).

RESULTS

We retrospectively analysed 51 441 CXRs from 2020 
and used real-time CAD to analyse 17 078 CXRs in 2021 
and 28 112 CXRs in 2022. Participants’ demographic 
and clinical characteristics differed across the three 
years (Table 1). The proportion of participants aged 60 
years and older was lower in 2022 (40.5%) compared to 
2020 (47.1%) and 2021 (46.7%). Females outnumbered 
males in all years, with the lowest proportion of males 
(41.1%) recorded in 2020. Participants in 2021 were 
the least symptomatic, with only 16.8% reporting any 
symptom compared to 31.8% in 2020 and 33.9% in 
2022; cough was the most frequently reported symptom. 
Across all years, a total of 15 278 participants had CXRs 

that were rated as TB-presumptive (15.8%), among 
whom 14 024 (91.8%) underwent Xpert testing and 
1254 (8.2%) dropped out. Additionally, 1200 who had 
TB-negative CXRs but presented with TB symptoms and/
or risk factors underwent Xpert testing, for a total of 
15 224 (92.1% TB-presumptive CXRs, 7.9% TB-negative 
CXRs) (Table 1). Across the study period, Xpert positivity 
averaged 7.5% (1144/15 224). Xpert positivity was lower 
among those with TB-negative CXRs (2.9%) and among 
those with subclinical TB (5.9%).

Among the 1144 individuals who were diagnosed  
with Xpert-confirmed TB disease during 2020–2022, 
around half had subclinical TB (51%). However, this 
proportion differed by year, geographical region, age 
group, prior TB treatment, smoking status, alcohol use 
and malnutrition (Table 2; Supplementary Table 1). 
Subclinical TB prevalence was higher in the northern region 
than in the central and southern regions (72.5%, 36.7% 
and 49.8%, respectively). Subclinical TB prevalence was 
higher among older age groups and in those with a history 
of TB treatment than those without (55.2% versus 48.3%). 
Subclinical TB prevalence was lower in smokers than 
non-smokers (43.2% versus 54.6%), those with alcohol 
use disorders than those without (38.2% versus 51.9%), 
and those with malnutrition than those without (20.0% 
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Fig. 1. Models employed for CAD-CXR interpretation for TB in Viet Nama,b

CAD: computer-aided detection; CXR: chest radiography; TB: tuberculosis; Xpert: GeneXpert.
a According to the CAD-first model (left), CXRs are interpreted by CAD software first, and only CAD TB-presumptive CXRs are then interpreted by on-site physicians.
b According to the CAD-parallel model (right), all CXRs are interpreted by both CAD and on-site physicians; physicians have the option of agreeing or disagreeing with 

the CAD interpretation when making their final decision (TB-presumptive or TB-negative) and making a referral for Xpert testing.
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2X: Double X; N: number; SD: standard deviation; IQR: interquartile range; TB: tuberculosis; CXR: chest radiography; Xpert: GeneXpert; CAD: computer-aided 
detection; ND: not determined due to differing CAD models/thresholds each year.
a Some age data were missing: n = 149 (2020); n = 23 (2021); n = 62 (2022).
b Characteristics for people living with HIV are not summarized due to small sample size (n = 65 for all years).
c Age cut-off for “elderly” (aged ≥60 years) was defined using the Viet Nam Law for the Elderly.17

d Number of participants who underwent Xpert testing (n = 15 224) as a percentage of the total number of participants with CXRs (n = 96 631). Note that this 
number includes 1200 participants with physician TB-negative CXRs who also underwent Xpert testing. The decision to offer Xpert testing for these participants 
was at the discretion of the on-site physician based on an assessment of symptoms and risk factors.
e Number of participants with a positive Xpert test result (n = 1144) as a percentage of the number of participants who underwent confirmatory Xpert testing (n = 15 224).

Table 1. Participant characteristics for 2X community case finding, 2020–2022

Characteristics
2020–2022 

(N = 96 631)
2020 

(n = 51 441)
2021 

(n = 17 078)
2022 

(n = 28 112)

Region     

  North (%) 14 624 (15.1) 11 825 (23.0) 2799 (16.4) –

  Central (%) 6072 (6.3) 3675 (7.1) 2397 (14.0) –

  South (%) 75 935 (78.6) 35 941 (69.9) 11 882 (69.6) 28 112 (100)

Agea     

  Mean (SD) 54.32 (18.17) 54.88 (18.14) 54.34 (19.05) 53.31 (17.62)

  Median (IQR) 58 (45–67) 58 (46–67) 58 (45–67) 56 (43–66)

Sex     

  Female (%) 54 535 (56.6) 30 320 (58.9) 8886 (52.3) 15 329 (54.9)

  Male (%) 41 829 (43.4) 21 114 (41.1) 8116 (47.7) 12 599 (45.1)

Screening group     

  Household contacts (%) 20 996 (21.7) 12 587 (24.5) 4575 (26.8) 3834 (13.6)

  Other vulnerable populations (%) 75 627 (78.3) 38 846 (75.5) 12 503 (73.2) 24 278 (86.4)

Specific vulnerable populationsb     

  Elderlyc (≥60 years) (%) 43 481 (45.1) 24 153 (47.1) 7967 (46.7) 11 361 (40.5)

  Prior TB treatment (%) 9218 (9.5) 5114 (9.9) 2074 (12.1) 2030 (7.2)

  Smoker (%) 11 805 (12.2) 5957 (11.6) 1826 (10.7) 4022 (14.3)

  Alcohol use disorder (%) 2706 (2.8) 1253 (2.4) 445 (2.6) 1008 (3.6)

  Malnutrition (%) 1001 (1.0) 652 (1.3) 116 (0.7) 233 (0.8)

  Diabetes (%) 9268 (9.6) 5169 (10.0) 1275 (7.5) 2824 (10.0)

  Hypertension (%) 33 639 (34.8) 17 365 (33.8) 5404 (31.6) 10 870 (38.7)

  Asthma (%) 4067 (4.2) 1304 (2.5) 856 (5.0) 1907 (6.8)

  Chronic obstructive pulmonary disease (%) 1677 (1.7) 772 (1.5) 620 (3.6) 285 (1.0)

Symptoms     

  Cough of any duration (%) 25 447 (26.3) 14 499 (28.2) 2639 (15.5) 8309 (29.6)

  Fever (%) 1580 (1.6) 1197 (2.3) 55 (0.3) 328 (1.2)

  Night sweats (%) 2624 (2.7) 1462 (2.8) 98 (0.6) 1064 (3.8)

  Weight loss (%) 3947 (4.1) 2524 (4.9) 301 (1.8) 1122 (4.0)

  Any symptom (%) 28 750 (29.8) 16 333 (31.8) 2875 (16.8) 9542 (33.9)

CXR and Xpert results     

  CAD TB-presumptive CXR (%) ND 6934 (13.5) 2892 (16.9) 5033 (17.9)

  Physician TB-presumptive CXR (%) 15 278 (15.8) 7406 (14.4) 3789 (22.2) 4083 (14.5)

  Xpert testing (rate,%)d 15 224 (15.8) 7205 (14.0) 3722 (21.8) 4297 (15.3)

  Xpert positivitye     

    Overall (%) 1144 (7.5) 620 (8.6) 194 (5.2) 330 (7.7)

    TB-negative CXR (%) 35 (2.9) 20 (4.4) 10 (2.8) 5 (1.3)

    Subclinical TB (%) 584 (5.9) 302 (6.8) 130 (4.4) 152 (5.9)

    Symptomatic TB (%) 560 (10.7) 318 (11.5) 64 (8.7) 178 (10.2)

  Xpert-confirmed TB yield overall per 100 000 CXR 1184 1205 1136 1174
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versus 51.5%). In multivariable logistic regression models, 
residing in the northern region (adjusted odds ratio [aOR]: 
2.37; 95% confidence interval [CI]: 1.42–3.96) and prior 
treatment for TB (aOR: 1.36; 95% CI: 1.05–1.75) were 
associated with higher odds of subclinical TB disease. 

Age groups 30–39 and 40–49 years (aOR: 0.50; 95% 
CI: 0.30–0.85 and aOR: 0.55; 95% CI: 0.36–0.84, 
respectively), smoking (aOR: 0.68; 95% CI: 0.52–0.90) 
and malnutrition (aOR: 0.28; 95% CI: 0.08–0.99) were 
associated with lower odds of subclinical TB. Neither  
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aOR: adjusted odds ratio; CXR: chest radiograph; OR: odds ratio; TB: tuberculosis; Xpert: GeneXpert.
* P < 0.001; ** P < 0.01; *** P < 0.05.
a All characteristics shown in this table were included as predictors in the multivariable logistic regression model. We opted for the most parsimonious model and 
thus did not include hypertension, asthma and chronic obstructive pulmonary disease as predictors since they did not change the included predictors’ statistical 
significance for association with the outcome. HIV was not included as a predictor due to small sample size (n = 65 for all years).
b Logistic regression models that include age groups have a sample of n = 1141 (3 cases missing information on age).

Table 2. Demographic and clinical characteristics of individuals with Xpert-confirmed TB disease, comparing 
subclinical and symptomatic disease, and associations with subclinical TB, 2020–2022a

Characteristics Subclinical TB Symptomatic TB Total
OR (95% CI) 
(n = 1144)

aOR (95% CI) 
(n = 1141)

Positive Xpert result 584 (51.0) 560 (49.0) 1144 – –

    Physician TB-presumptive CXR 561 548 1109 – –

    Physician TB-negative CXR 23 12 35 – –

Region      

    North (%) 58 (72.5) 22 (27.5) 80 2.66* (1.60–4.41) 2.37** (1.42–3.96)

    Central (%) 11 (36.7) 19 (63.3) 30 0.58 (0.27–1.24) 0.47 (0.22–1.02)

    South (%) 515 (49.8) 519 (50.2) 1034 Reference Reference

Sex      

    Male (%) 484 (50.8) 468 (49.2) 952 0.95 (0.70–1.30) 1.09 (0.78–1.54)

    Female (%) 100 (52.1) 92 (47.9) 192 Reference Reference

Age groupb      

    0–19 (%) 5 (45.5) 6 (54.5) 11 0.67 (0.20–2.20) 0.63 (0.19–2.09)

    20–29 (%) 9 (45.0) 11 (55.0) 20 0.65 (0.27–1.60) 0.68 (0.27–1.69)

    30–39 (%) 27 (38.6) 43 (61.4) 70 0.50** (0.30–0.83) 0.50*** (0.30–0.85)

    40–49 (%) 48 (42.1) 66 (57.9) 114 0.58** (0.39–0.87) 0.55** (0.36–0.84)

    50–59 (%) 156 (49.1) 162 (50.9) 318 0.77 (0.59–1.01) 0.81 (0.61–1.07)

    ≥60 (%) 338 (55.6) 270 (44.4) 608 Reference Reference

Prior treatment for TB      

    No (%) 336 (48.3) 359 (51.7) 695 Reference Reference

    Yes (%) 248 (55.2) 201 (44.8) 449 1.32*** (1.04–1.67) 1.36*** (1.05–1.75)

Smoker      

    No (%) 431 (54.6) 359 (45.4) 790 Reference Reference

    Yes (%) 153 (43.2) 201 (56.8) 354 0.63* (0.49–0.82) 0.68** (0.52–0.90)

Diabetes      

    No (%) 517 (51.3) 491 (48.7) 1008 Reference Reference

    Yes (%) 67 (49.3) 69 (50.7) 136 0.92 (0.64–1.32) 0.91 (0.63–1.32)

Alcohol use disorder      

    No (%) 558 (51.9) 518 (48.1) 1076 Reference Reference

    Yes (%) 26 (38.2) 42 (61.8) 68 0.57*** (0.35–0.95) 0.79 (0.46–1.34)

Malnutrition      

    No (%) 581 (51.5) 548 (48.5) 1129 Reference Reference

    Yes (%) 3 (20.0) 12 (80.0) 15 0.24*** (0.07–0.84) 0.28*** (0.08–0.99)
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sex nor self-reported diabetes was associated with 
subclinical TB.

Among those with Xpert-confirmed TB, the most 
frequently classified CAD radiographic abnormalities were 
consolidation, fibrosis, nodule and opacity (Table 3). In 
adjusted analyses, cavity, consolidation, fibrosis, nodule 
and opacity were significantly associated with higher 
odds of Xpert-confirmed TB. Fibrosis was also associated 
with higher odds of subclinical TB (aOR: 1.77; 95% 
CI: 1.10–2.85), while consolidation was associated 
with lower odds of subclinical TB (aOR: 0.71; 95% CI: 
0.52–0.97) for all years combined (Table 4).

DISCUSSION

This study describes the Viet Nam NTP’s 2X community-
based active case-finding strategy that effectively 
diagnosed TB among symptomatic and asymptomatic 
TB-vulnerable populations during 2020–2022. Of the 
96 631 individuals who were targeted by 2X campaigns 
and screened with CXRs, 15 224 underwent Xpert testing, 
which was predominantly for TB-presumptive CXRs 
(14 024; 92.1%), and 1144 individuals were diagnosed 
with Xpert-confirmed TB, of whom 584 (51.0%) had 
subclinical TB disease. A CAD radiographic classification 
of fibrosis was found to be a good predictor of subclinical 
TB disease.

Our study provided several insights into the 
distribution of symptomatic versus subclinical TB disease 

among 2X participants. While the total number of 
Xpert-confirmed TB cases was lower in 2021, coinciding 
with Viet Nam’s most severe phase of the COVID-19 
pandemic,24 the proportion of participants diagnosed 
with subclinical TB in 2021 was higher than in other 
years. The reasons for this are likely multifactorial, 
potentially including increased stigma around respiratory 
diseases during the height of the COVID-19 pandemic, 
resulting in underreporting of TB symptoms. Also, 
individuals with respiratory symptoms may have been 
preferentially triaged to COVID-19 evaluation, leaving 
a higher proportion of individuals without symptoms 
to participate in 2X campaigns. Pandemic lockdowns 
in 2021 may have additionally delayed care-seeking, 
possibly leading to more severe – and symptomatic – TB 
disease being diagnosed in 2022.

We also noted that 2X campaigns in Viet Nam’s 
northern region detected higher proportions of subclinical 
TB disease than southern campaigns. This could be 
related to the relatively low TB prevalence in the north, 
especially compared with the south where some of 
the highest TB prevalences in the country have been 
recorded.16,25 This pattern has been found in other 
countries, including Cambodia, China and India.12 
Furthermore, we observed a greater prevalence of 
subclinical TB among older 2X participants (≥60 years). 
This finding is in contrast with a study conducted in 
Republic of Korea, which found that age <65 years was 
associated with subclinical TB disease.26 However, the 

Table 3. Distribution of CAD multilabel, non-TB radiographic abnormalities among CXRs with Xpert-confirmed 
TB, 2020–2022

Radiographic abnormality qXR threshold 2020 
n = 620 (%)

2021 
n = 194 (%)

2022 
n = 330 (%)

Blunted costophrenic angle 0.80 12.3 9.3 14.5

Calcification 0.85 – 33.5 40.6

Cardiomegaly 0.85 1.9 0.5 2.7

Cavity 0.90 33.4 42.8 42.4

Consolidation 0.50 71.0 77.3 79.1

Fibrosis 0.70 90.5 92.3 90.3

Hilar lymphadenopathy 0.85 1.6 3.1 3.3

Nodule 0.50 86.9 86.6 90.0

Opacity 0.50 96.9 97.9 99.1

Pleural effusion 0.75 12.6 12.9 13.9

Pneumothorax NA – 1.0 0.6

CAD: computer-aided detection; CXR: chest radiography; NA: not available; qXR: Qure.ai CAD software; TB: tuberculosis; Xpert: GeneXpert.



https://ojs.wpro.who.int/8

Innes et alComputer-aided detection for chest radiographs in active case finding

two studies are not directly comparable due to differences 
in the definition of subclinical TB; the Korean study 
defined subclinical TB as “radiographic or microbiologic 
results consistent with TB among individuals without 
clinical symptoms”, whereas ours relied solely on Xpert 
confirmation. Our findings regarding smoking also differ 
from Viet Nam’s TB prevalence survey results, which 
suggest that current smoking is associated with both 
symptomatic and subclinical TB disease.27 In contrast, 

in our 2X population, smoking was only associated with 
lower odds for subclinical TB; differences in study design 
most likely explain the discrepancies between our study 
and prevalence survey results.

Fibrosis was the only CAD multilabel radiographic 
abnormality that was associated with higher odds 
of subclinical TB disease among 2X participants. A 
common sequela of pulmonary TB,28 fibrotic lesions tend 
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aOR: adjusted odds ratios; CAD: computer-aided detection; CI: confidence interval; NA: not available; TB: tuberculosis; Xpert: GeneXpert.
* P < 0.05; ** P < 0.01; *** P < 0.001.
a All 11 multilabel, non-TB radiographic abnormalities, if available, were included as predictors in the multivariable logistic regression models.
b Number of individuals with Xpert results.
c Number of individuals with Xpert-confirmed TB disease.
d Point estimates are not available because there were no CXRs with calcification or pneumothorax in 2020.

Table 4. Summary of associations between CAD radiographic abnormalities and Xpert-confirmed/subclinical 
Xpert-confirmed TB disease, 2020–2022

Radiographic abnormality

aORa (95% CI) for Xpert-confirmed TB disease

All years 
(Nb = 15 224)

2020 
(nb = 7205)

2021 
(nb = 3722)

2022 
(nb = 4297)

Blunted costophrenic angle 0.72 (0.54–0.95)* 0.95 (0.64–1.40) 0.36 (0.17–0.75)** 0.66 (0.41–1.08)

Calcification 0.63 (0.53–0.75)*** 0.33 (0.02–5.94) 0.80 (0.57–1.13) 0.60 (0.46–0.78)***

Cardiomegaly 0.79 (0.51–1.23) 0.84 (0.46–1.52) 0.57 (0.11–3.00) 0.82 (0.41–1.65)

Cavity 1.71 (1.47–1.98)*** 1.23 (1.00–1.51) 2.80 (1.97–3.97)*** 2.18 (1.65–2.88)***

Consolidation 4.40 (3.76–5.15)*** 3.79 (3.07–4.67)*** 5.27 (3.53–7.85)*** 5.14 (3.80–6.96)***

Fibrosis 1.38 (1.08–1.77)* 1.64 (1.16–2.31)** 1.39 (0.73–2.67) 1.01 (0.66–1.55)

Hilar lymphadenopathy 0.95 (0.62–1.43) 1.03 (0.52–2.03) 0.82 (0.35–1.92) 1.12 (0.58–2.15)

Nodule 2.06 (1.67–2.53)*** 1.98 (1.50–2.62)*** 1.65 (1.01–2.68)* 2.26 (1.51–3.38)***

Opacity 2.51 (1.59–3.95)*** 2.27 (1.30–3.98)** 2.95 (0.97–9.01) 2.90 (0.93–9.04)

Pleural effusion 0.89 (0.68–1.18) 0.74 (0.50–1.09) 1.29 (0.66–2.53) 1.01 (0.61–1.66)

Pneumothorax 0.49 (0.18–1.32) 4.53 (0.18–111.69) 0.73 (0.17–3.07) 0.35 (0.09–1.33)

 aORa (95% CI) for subclinical Xpert-confirmed TB disease

Radiographic abnormality
All years 

(Nc = 1144)
2020 

(nc = 620)
2021 

(nc = 194)
2022 

(nc = 330)

Blunted costophrenic angle 1.06 (0.62–1.79) 1.35 (0.65–2.82) 0.35 (0.08–1.57) 1.38 (0.56–3.40)

Calcification 1.26 (0.92–1.74) NAd 1.22 (0.62–2.40) 1.27 (0.78–2.06)

Cardiomegaly 0.61 (0.25–1.44) 0.77 (0.25–2.39) 1.28 (0.05–33.28) 0.35 (0.08–1.57)

Cavity 0.85 (0.65–1.12) 0.80 (0.56–1.16) 1.41 (0.72–2.78) 0.67 (0.40–1.13)

Consolidation 0.71 (0.52–0.97)* 0.58 (0.39–0.88)* 0.91 (0.40–2.08) 0.97 (0.53–1.77)

Fibrosis 1.77 (1.10–2.85)* 2.15 (1.11–4.15)* 0.69 (0.15–3.19) 1.63 (0.71–3.73)

Hilar lymphadenopathy 1.00 (0.47–2.14) 0.80 (0.23–2.74) 0.96 (0.19–4.98) 1.15 (0.34–3.88)

Nodule 0.93 (0.62–1.42) 1.30 (0.73–2.30) 0.99 (0.34–2.89) 0.55 (0.25–1.23)

Opacity 0.49 (0.20–1.22) 0.62 (0.21–1.83) 0.29 (0.01–7.09) 0.12 (0.01–2.62)

Pleural effusion 0.65 (0.39–1.11) 0.57 (0.27–1.19) 0.97 (0.25–3.78) 0.65 (0.25–1.69)

Pneumothorax 1.55 (0.25–9.48) NAd 0.45 (0.03–7.17) 1.89 (0.18–19.99)
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to progress and regress repeatedly and thus represent a 
dynamic risk.29 Nevertheless, there is some evidence to 
suggest that the presence of fibrosis may be prognostic for 
TB disease; one study showed that fibrosis or infiltrates on 
18F-FDG PET/CT can identify subclinical TB that is likely 
to progress to symptomatic TB disease among people 
living with HIV.14 Others have shown that fibrotic lesions 
are associated with an increased risk for progression to 
TB disease among individuals with TB infection.5,30 For 
2X participants, consolidation (which develops when 
air-filled spaces in the lungs become fluid-filled)31 was 
associated with lower odds of subclinical TB. This is not 
surprising, since fluid occupying air-filled spaces normally 
causes respiratory symptoms.

Interest in the use of chest radiography for active case 
finding, particularly subclinical TB, has increased in recent 
years;13,14,32–35 multiple studies have been conducted in a 
variety of settings (high- and low-TB burden) and differing 
study populations (in terms of age structure or HIV status). 
Studies have also compared the accuracy of CXRs versus 
CT scans and CXR field reading versus expert reading 
for identifying subclinical TB abnormalities. According to 
one such study in a low-TB burden country, cavitation, 
extensive parenchymal abnormalities and endobronchial 
spread were more frequently missed on CXRs than on CT 
scans.13 Another study found that cavitation and upper-lobe 
parenchymal abnormalities were more likely to be missed 
by CXR field readers than expert readers.33 In our setting, 
while cavitation was associated with higher odds of Xpert-
confirmed TB, we found no evidence of an association with 
subclinical TB. Using qXR’s pre-set threshold for cavitation 
of ≥0.90, we detected cavities in 33.4–42.8% of CXRs 
with Xpert-confirmed TB (depending on the year). It is 
possible that had we employed a lower, more sensitive 
threshold, we might have detected more cavitation and/
or observed significant differences in cavitation between 
symptomatic and subclinical TB. Further limiting our 
analysis was the qXR output, which did not include an 
abnormality score for cavitation.

Deep learning-based CAD classification of multilabel 
radiographic abnormalities on CXR has demonstrated 
variable diagnostic accuracy for TB. An early version of 
qXR image classifiers matched human expert annotations 
for four radiographic abnormalities in drug-resistant TB 
CXRs.20 Although qXR 2.0’s discriminatory power for 
classifying specific chest abnormalities, measured against 
radiologists’ interpretations, proved to be variable,21 qXR 

3.0 found significant associations between upper-lobe 
cavitation and TB disease among diabetics.36 Radiographic 
abnormalities classified by Lunit INSIGHT version 3.1.0.0 
(Seoul, Republic of Korea) were associated with culture-
confirmed TB disease but had limited sensitivity using the 
manufacturer’s pre-set thresholds.37 Other convolutional 
neural networks-based algorithms reportedly classified 
TB-related radiographic abnormalities accurately.23,38 
Taken together, these studies suggest that CAD for 
CXRs may yet have value beyond providing simple 
binary results (TB-presumptive versus TB-negative). To 
date, however, no product has the proven capacity to 
accurately identify subclinical TB abnormalities. More 
research is needed to determine if CAD can improve CXR 
accuracy for detecting subtle lesions of early, subclinical 
TB disease. Clarification is needed from manufacturers 
on how multilabel radiographic abnormalities factor into 
the CAD TB threshold deep-learning algorithms. One way 
forward might be to focus on subclinical radiographic 
abnormalities that are detected on CT and PET/CT scans 
but are missed on CXR. For example, it might be possible 
to evaluate whether calibration of the fibrosis threshold 
improves the accuracy of CXR detection of subclinical 
TB disease. Cavitation, although not associated with 
subclinical TB in our population (possibly due to the high 
qXR ≥0.90 threshold), is another candidate for a similar 
evaluation. Of note, CXRs cannot detect metabolic activity 
in radiographic lesions; some lesions may thus exhibit 
the same radiographic appearance on CXRs, whether 
they are active or inactive, and regardless of the CAD 
threshold accuracy for TB or multilabel abnormalities.

In this study, the CAD-first and CAD-parallel 
integration models supported CXR interpretation and 
Xpert referral decisions along the 2X community workflow. 
The CAD-first model decreased physicians’ workloads by 
limiting the number of CXRs for them to interpret to those 
rated as TB-presumptive; programmatic implementation 
in other settings has shown similar benefits.34,39 The 
CAD-first model works well in high-TB burden settings 
where clinical evaluation, CXR interpretation, Xpert 
referral decisions and sputum collection are conducted 
in one site – for example, community campaigns that 
use mobile CXR vans or ultraportable CXR units as 
one-stop shops. CAD-parallel interpretation was difficult 
to implement with fidelity in the mobile vans, since in 
our protocol the physicians were not blinded to the CAD 
result; thus, their CXR reading may have been influenced 
by the CAD result, even though, ideally, they should have 
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been independent. CAD-first integration was selected 
for the Viet Nam community setting, while CAD-parallel 
integration was selected for facility-based 2X case 
finding.40

Our study had limitations. We conducted Xpert 
testing only in participants with TB-presumptive 
CXRs or TB symptoms or risk; we did not carry out 
systematic diagnostic testing in participants with 
normal CXRs. Not all participants with TB-presumptive 
CXRs underwent Xpert testing; however, this proportion 
was relatively small (8.2%) and thus unlikely to have 
significantly biased our findings. The CAD model and 
TB-presumptive threshold varied from 2020 to 2022, 
a timeframe also affected by COVID-19. Together, 
these factors limited comparisons of CXR results and 
Xpert yield across years. Therefore, in this report, 
we prioritized analyses of the multilabel, non-TB 
radiographic abnormalities, each of which had its own 
threshold that did not change from 2020 to 2022 and 
was, in theory, less affected by the CAD TB threshold. 
The changing CAD TB thresholds may still affect 
interpretation of multilabel radiographic abnormalities, 
especially for year-to-year comparisons.

CONCLUSIONS

Double X TB case finding detected a high proportion of 
subclinical TB disease among TB-vulnerable populations 
in Viet Nam’s communities. While there is a clear role for 
CAD as a tool to aid the interpretation of digital CXRs in 
screening programmes for TB disease, further research 
is needed to determine whether CAD can improve CXR 
identification of subclinical TB using multilabel, non-TB 
radiographic abnormalities.
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