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Objective: This study aims to enhance the capacity of dengue prediction by investigating the relationship of dengue 
incidence with climate and environmental factors in the Mekong Delta region (MDR) of Viet Nam by using remote sensing 
data.

Methods: To produce monthly data sets for each province, we extracted and aggregated precipitation data from the Global 
Satellite Mapping of Precipitation project and land surface temperatures and normalized difference vegetation indexes from 
the Moderate Resolution Imaging Spectroradiometer satellite observations. Monthly data sets from 2000 to 2016 were 
used to construct autoregressive integrated moving average (ARIMA) models to predict dengue incidence for 12 provinces 
across the study region.

Results: The final models were able to predict dengue incidence from January to December 2016 that concurred with 
the observation that dengue epidemics occur mostly in rainy seasons. As a result, the obtained model presents a good 
fit at a regional level with the correlation value of 0.65 between predicted and reported dengue cases; nevertheless, its 
performance declines at the subregional scale.

Conclusion: We demonstrated the use of remote sensing data in time-series to develop a model of dengue incidence in the 
MDR of Viet Nam. Results indicated that this approach could be an effective method to predict regional dengue incidence 
and its trends.

According to the World Health Organization (WHO),1 
Viet Nam is among the top 10 countries with the highest 
reported number of dengue cases in the world (91 321 
cases in 2012). Studies have shown that dengue epidem-
ics in Viet Nam occurred cyclically every 3–5 years and 
peaked approximately every 10 years.2 These cycles are 
thought to be influenced by the circulating viral sero-
types, host immunity and climate oscillations.3 Dengue 
transmission occurs throughout the year in Viet Nam with 
peak numbers of cases reported in the rainy season from 
May to October.4 Since 2007, dengue has been recorded 
in 55 of the 63 provinces in Viet Nam, increasing from 
north to south with the Mekong Delta region (MDR) 
experiencing the highest incidence recorded during the 
years 2000 to 2016.

Several recent studies have aimed to better un-
derstand the dynamics of dengue and the influences 

of environmental factors on the disease and to better 
predict outbreaks. Climate factors, in addition to multiple 
human, biological and ecological determinants, influence 
the emergence and re-emergence of infectious diseases, 
including dengue,5 which is transmitted by both the 
primary vector Aedes aegypti and the secondary vector 
Aedes albopictus.6,7 Studies have found a significant 
correlation between rain and dengue incidence in Met-
ropolitan Manila, Philippines from 1996 to 2005,8 and 
a correlation between temperature, rain and dengue 
incidence in southern Thailand by multiple regression 
analysis.9 On a regional scale, a review of the impacts 
of climate change on human health provided more 
evidence of the burden of climate change–attributable 
diseases and emphasized the uncertainty in attributing 
diseases to climate change, owing to a lack of long-term, 
high-quality data.10 Climate change is likely to affect the 
seasonal and geographical distribution of dengue fever in 
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rivers, channels and floodplains. We divided this region 
into two subregions: subregion I has the higher dengue 
incidence provinces (An Giang, Dong Thap, Long An, 
Tien Giang and Ben Tre) and subregion II has the lower 
incidence provinces (Vinh Long, Tra Vinh Can Tho, Hau 
giang, Soc Trang, Bac Lieu, Kien Giang and Ca Mau), 
separated by a white line in Fig. 1. Dengue fever has 
been recorded as the second most frequent reason for 
hospitalization among communicable diseases in this 
region.16

Remote sensing data

We used GSMaP data as an alternative for surface rainfall 
measurement in an attempt to expand the use of remote 
sensing data with the advantages of spatial coverage 
with high resolution and temporal availability. The daily 
GSMaP-version 6 data17 with a spatial resolution of 0.1 × 
0.1 degrees were extracted and accumulated to calculate 
monthly rain. We used monthly land surface temperature 
data from MODIS LSTd and LSTn (MOD11A2)18 with a 1 
km spatial resolution as a proxy for air temperature. In 
addition to climate variables, one of the most commonly 
used remote sensing–derived environmental variables, 
the normalized difference vegetation index (NDVI) from 
MODIS (MOD13Q1) with a 250 m spatial resolution, 
was also used in the model for its influence on dengue.19 
These remote sensing–based parameters were aggregat-
ed to compute mean monthly variables for each province 
as examples presented in Fig. 2, showing clear spatial 
variations among provinces and between variables.

Statistical analysis

We used the Box-Jenkins methodology20 to fit ARIMA 
models to monthly dengue incidence in 12 provinces, 
using the statistical forecast package in RStudio software 
(version 1.1) (RStudio, Boston, MA, USA).21 Dengue case 
definitions were based on WHO criteria22 and collected 
through the disease surveillance systems according to 
Viet Nam’s Ministry of Health regulations.23 The dengue 
cases reported from 2001 to 2015 were used for devel-
oping the time series model, and the cases during 2016 
were used for validating the model. To avoid effects from 
the non-constant variance, we stabilized dengue counts 
by natural log transformation.

First, to confirm that ARIMA models were suitable 
for this analysis, we examined the data for seasonality and 

the Asia–Pacific region, but more studies are needed that 
adjust for regional and subregional socio-environmental 
factors in the assessment of climate effects on dengue 
transmission.5 Climate is only one of many environmental 
factors; changes in land cover by human settlements, the 
presence of water bodies, and vegetation type also affect 
dengue transmission processes.11

A range of approaches, including statistical model-
ling, mathematical modelling and spatial analysis, have 
been applied to demonstrate relationships between 
dengue and climate variables and to predict dengue cases 
and outbreaks.12, 13 Statistical models that are commonly 
constructed to predict dengue incidence cannot precisely 
predict the time and place of a dengue outbreak. How-
ever, they are able to quantitatively associate climactic 
factors such as rain, temperature and humidity with den-
gue epidemics at certain geographic areas with specific 
time lags.14

We assumed that there was a strong association 
between dengue incidences and climate variables; there-
fore, we applied a time-series autoregressive integrated 
moving average (ARIMA) model for dengue prediction 
in the MDR of Viet Nam. To minimize the limitations of 
climate data from meteorological stations in spatial and 
time scales, we used the most accessible remote sensing 
data for climate variables: the Global Satellite Mapping 
of Precipitation (GSMaP) for rain data and the Moderate 
Resolution Imaging Spectroradiometer (MODIS) land sur-
face temperature n/d (MOD11A2, US Geological Survey, 
Reston, VA, USA) for night (LSTn) and day (LSTd). Our 
aim was to investigate the capability of ARIMA to provide 
sufficient lead-time prediction of dengue15 for a region of 
high incidence in a tropical climate. This was an effort to 
combine advanced geospatial data in a predictive model 
to assist public health control and response operations in 
the region.

METHODS 

Study site

The study was conducted in the lower MDR in south-
western Viet Nam, using the average monthly number of 
dengue cases (Fig. 1). The MDR reported up to 65% of 
the total cases of dengue in Viet Nam during the period 
2000 to 2016. This is a flat and low-lying area of 40 576 
km2 covering 13 provinces within a complex network of 



WPSAR Vol 11, No 1, 2020  | doi: 10.5365/wpsar.2018.9.2.012https://ojs.wpro.who.int/ 3

Remote sensing based time–series modelling of dengue in the Mekong Delta region of Viet NamNga et al

studies.24–26 Next, the structure of the model followed 
the standard form for ARIMA, (p,d,q)(P,D,Q)s, where p 
is the order of autoregression; d, the degree of differenc-
ing; q, the order of the moving average; P, the seasonal 
autoregression; D, the degree of seasonal differences; Q, 
the seasonal moving average; and s, the seasonal period. 

interannual variations of dengue incidence and climate 
and environmental variables (rain, LSTd, LSTn and NDVI) 
during the period 2000–2016 for each province. Then, 
the adequacy of each model for each province was veri-
fied by histogram, by autocorrelation of the standardized 
residuals, and by the Ljung-Box test, similar to previous 

GSMaP = Global Satellite Mapping of Precipitation; MODIS LSTd  = Moderate Resolution Imaging Spectroradiometer land surface temperature, day; MODIS NDVI = 
Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index
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Fig. 1. Average monthly numbers of dengue cases for 13 provinces in the Mekong Delta region, divided into 
subregions I and II by a white line, 2000–2016

Fig. 2. Examples of monthly estimates for (a) GSMaP rain, (b) MODIS LSTd and (c) MODIS NDVI in the Mekong 
Delta region, November 2010



WPSAR Vol 11, No 1, 2020  | doi: 10.5365/wpsar.2018.9.2.012 https://ojs.wpro.who.int/4

Nga et alRemote sensing based time–series modelling of dengue in the Mekong Delta region of Viet Nam

time lags. In addition, dengue had both positive and 
negative correlation with NDVI at 4-month to 5-month 
time lags. Notably, we found that the two subregions had 
different climate and environmental influences on dengue 
based on their correlations and time lags. In subregion I, 
dengue was found to have a higher correlation with rain 
with a 1-month time lag, and NDVI had a 5-month time 
lag; dengue was also associated with LSTd generally with 
a 4-month time lag and LSTn with a 1-month time lag. 
These findings are different than those for provinces in 
subregion II along the coast of the MDR where dengue 
was found to have a weaker correlation with rain and 
a negative correlation with NDVI with a 4-month time 
lag. For provinces in subregion II, dengue was correlated 
with a 1-month shorter time lag for LSTd but a 1-month 
longer time lag for LSTn compared to subregion I. For 
other provinces, including Vinh Long, Can Tho, and Kien 
Giang, dengue was found to have relatively low cor-
relations with all variables and at mixed time lags. The 
variability in the association between dengue and climate 
and environmental factors across provinces in the study 
region emphasizes the need for a separate time-series 
model for each province.

Model validation 

The best time-series ARIMA model with final independ-
ent variables found for each province was applied to 
predict dengue for the period from January to December 
2016. In most cases, rain and LSTn remained in the final 
model; LSTd and NDVI were occasionally removed when 
correlations were less than 0.25. We compared predicted 
dengue with reported cases for the whole MDR, as shown 
in Fig. 5. The results showed that predicted dengue in 
every province closely followed the trend of reported data 
(Fig. 5a) and that these data are in good linear regres-
sion with the square of correlation of 0.65 for the whole 
region (Fig. 5b).

We also evaluated the association between monthly 
predicted and reported dengue incidence from January 
to December 2016 by calculating the Pearson correlation 
coefficient28 for each province (the numbers presented 
correspond to the provinces in Fig. 5a). The correlation 
varies significantly, from approximately 0.22 to 0.85 
(with P < 0.05) for different provinces; nine provinces 
had a correlation greater than 0.50, and only three prov-
inces had a correlation below 0.50. We found that the 
predicted dengue during the period January to December 

Different ARIMA model forms (combinations of p, d, 
q, P, D and Q) were tested to fit the log-transformed 
time series data without environmental covariates. The 
best ARIMA model was selected as that with the lowest 
Akaike information criterion,24 a measure of the relative 
goodness of fit of a model across the 12 provinces (Hau 
Giang province was excluded as it had politically sepa-
rated from Can Tho province in 2004). Then, multivariate 
ARIMA models were fitted with log-transformed dengue 
cases in relation to all the climate variables with time lags 
that were chosen by their best correlation with dengue.

RESULTS

Seasonal variation of dengue and climate  
parameters

Fig. 3 presents an example of the time series of dengue, 
rain, LSTn and NDVI during 2000- 2016 for An Giang 
province. The plots showed strong seasonal and interan-
nual variations of all variables. We found this seasonal 
pattern apparent and consistent for all provinces in the 
region with higher dengue cases coinciding with rainy 
seasons. This enabled us to apply the ARIMA model to 
the entire MDR.

Model in association with variables

Fig. 4a presents an example of an ARIMA fitting model 
plot for An Giang province and the comparison of fitted 
with reported dengue cases; Fig. 4b shows the regres-
sion function with its root mean square error value for the 
fitted period of 2000–2015. The final model for each 
province was confirmed by the Ljung-box test27 of the 
residual with no correlation for fitted data.

We generated 12 final models that closely fitted 
dengue incidence from every province in incorporating 
climate and environment variables as external predictors. 
After careful screening, those variables with the highest 
correlation with dengue incidence at specific time lags 
were kept in the final ARIMA models (Table 1) that 
show the correlation value, and the monthly time lag is 
shown in brackets. Correlations between these variables 
and dengue are spread over a range of time lags across 
provinces. Dengue had the strongest correlation with 
rain at a 1-month time lag across all provinces, reaching 
0.60 at Long An province; dengue had a comparable 
correlation with LSTd and LSTn at 1-month to 4-month 
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LSTn = land surface temperature, night
NDVI = normalized difference vegetation index

a Reported data in black, fitted model in red and predicted model in blue.
b In log scale.

r = correlation coefficient of dengue with difference variables
bracketed numbers = time lag
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Fig. 3. Time series of (a) dengue, (b) rain, (c) LSTn, and (d) NDVI for An Giang province, 2000–2015

Fig. 4. Example of ARIMA model for An Giang province: (a) model fitting and (b) scatter plot of fitted and re-
ported dengue cases

Table 1. Final ARIMA models with correlation of dengue with climate and environmental variables for each  
province in time lags
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in subregion II and lower in subregion I, controverting 
the distribution of dengue among these two subregions 
(as in Fig. 1). This is a limitation of ARIMA modelled 
with only climate factors relating to vector abundance; 
transmission of dengue is also affected by other factors 
such as population density and activities, relating human 
susceptibility to the disease. Therefore, an assessment of 
prevailing vulnerabilities to dengue could be independent 
of its spatial distribution,29 but closely related to a com-
bination of climate, environment and sociodemographic 
conditions.30

Possible reasons of inconsistent effects of NDVI on 
dengue incidence include subprovincial variations in pre-
cipitation and a variety of land covers. Climatologically, 
the onset of the rainy season in the MDR usually appears 
first along the coast (subregion II) and moves gradually 
inland (toward subregion I), resulting in a different tem-
poral time lag in relationships between rain and dengue 
transmission over the region. Also, vegetation type and 
growth stage may play important roles in determining 
vector abundance, irrespective of their association with 
rain.31 An analysis of NDVI distribution in relation to land 
cover data over the whole region indicated that lower 
values of NDVI in subregion II corresponded to more 
water bodies, shrubs and mixed horticulture land cover 
types. Higher NDVIs were found in subregion I, which 
corresponded to more rice paddy land cover.

Several investigators have examined the associa-
tions among climate variables, demography and dengue 
incidence in the southern provinces of Viet Nam using 
a wavelet time series analysis,3,32 a standard multiple 

2016 was more similar to reported data for provinces in 
subregion II where dengue was found to have a negative 
correlation with NDVI and a positive correlation with LSTn 
at a 2-month time lag, as previously mentioned. For the 
provinces in subregion I, predicted dengue was found to 
have a weaker correlation with the reported data during 
the period January to December 2016, even though the 
stronger association of dengue with rain and NDVI was 
shown by the time-series data from the years 2000 to 
2015.

DISCUSSION

In an effort to overcome the limitations of spatial and 
time scales in climate data collected from meteorological 
stations, we created a high-quality data set of satellite 
remote sensing data for climate and environmental fac-
tors, i.e. rain data from GSMaP and temperature and 
vegetation data from MODIS for the entire MDR for 
dengue modelling using a time-series approach. Different 
combinations of components were evaluated to construct 
the best predictive ARIMA models for 12 provinces 
across the study region. We decided to use the ARIMA 
model because it can cope with a stochastic dependence 
of consecutive data and to account for autocorrelations 
in time series as well as seasonality, long-term trends 
and time lags.14 The selection of external variables was 
based on the best correlation of dengue with rain, LSTd, 
LSTn, and NDVI at different time lags for the 2000 to 
2015 data. The results of the validation showed differ-
ent performances of the ARIMA model over the region. 
The correlation of predicted and reported dengue during 
the period January to December 2016 was found higher 
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ling to provide early warning of vector-borne disease out-
breaks has been successfully demonstrated for malaria 
throughout Africa35 and for dengue epidemics in Brazil.14 
To determine our model’s usefulness as an early warning 
tool, the results of our study have been presented on the 
Internet not only for the MDR, but also for other regions 
of Viet Nam and the Philippines. However, the system 
should be evaluated by end users for its effectiveness for 
dengue predictions for two countries.
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